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Structural Diagram Method

Abstract

In this paper, the fundamentals of the structural

diagram method [1] for Distributed Parameter Systems

(DPS) are presented and reviewed. An example is given to

illustrate the application of this method for control design.
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I. Introduction

For lumped systems, practical control methods are

developed based either on the transfer function or the state
space representation of the system [3]. Although there are

many inherent connections between these two methods, there

exists many differences between them in terms of

mathematical analysis tools, design methods, and

engineering interpretation, etc. For DPS, howevcr, control

methods are predominantly based on the state space

representation of the system [2]. It seems that uhis approach
parallels that developed for lumped systems, but it is

difficult to understand for practicing engineers, and to

irr, plcmcnt a physical controller without an intensive

functional analysis background [2]. The structural diagram

method for the DPS (the counterpart of transfer function

method for lumped systems), on the other hand, should be

easier for practicing control engineers due to its simplicity,

convenience, and clarity of representation of the systems.

Also, the popularity of this method should be enhanced by

the fact that control engineers are already familiar with

complex variable methods from their experience in dealing

with lumped system.

In this paper, the fundamental concepts of the structural

theories are reviewed in an attempt to explore the

methodological value of a generalization of the structural

theory of DPS for practical control design.

II. Structural Diagram Method

The structural diagram method developed in [1] is

briefly reviewed here.
1. Distributed signal

In DPS, a distributed signal depends not only on time
but also on certain spatial variables. It then has ',he form

w(x,t), xeD, where D is a spatial domain. The Laplace

transform of this signal with respect to time is w(x,s).
2. Distributed block

U(x,s)_Y(y,s)

In order to describe the input/output relationship of a DPS,

a distributed block, an analog to the transfer function of a

lumped system, has the form W(y.x,s), xeDl, yaD2 for a

stationary process (the coefficients in a PDE do not change
with time), where DI and De are the domain for the distributed

input and output signal respectively. Therefore, the

relationship between any two places in the space is reflected

by inserting in their position in W(y,x,s). This is then the

Laplace transfer of the Green's function of the given DPS. The

relationship of the input and output is not simply a product of

the input signal and transfer function _ in the lumped system,

but instead, a composition of the two, which is defined by:
f

Y(y,s) = W(y.x,s)_U(x,s) = l_ W(y,_:,s)U(x,s)dx

2. Connecting blocks

A complicated DPS may involve more than one block,

The operations among them then need to be clarified. The

following three kinds of operations often arise in control

design.
Connections in series.

L,. , .._[,,,. I,x,slL_t ...... .x,,_l_--, :,_)_,x,S,--,.- i,, .(x V_,v -1 _ _ ", , .

If two blocks are connected in series as shown above, the

overall block is equivalent to:
/,

W(y,x,s) = Wl(x_,x,s)_W2(xt,x,s) = I Wl(xl,x,s)W2(y,xt,s)drl

),,

This is again, different from the lumped system where the

overall transfer function for two systems connect_ in series

is simply the product of two individual transfer functions. In

addition, the operation of composition is non-commutative in

__lseneral. If both block functions are known, the overall block
obtained after conducting the conventional integral

" operation.

Closed loop s'stem.

U(x's) 7"-q_Wlt---.-._V2(x,y,s)(Y'X'S) I_ _-Y(y,s)

Based on the block operation introduced before, it is easy to

show that the closed loop transfer function W(y,x,s) has the

following general form:

I



W(y.x,s)= W2t(y.x,s)@W(y:c,s)+ Wl(y.x,s)

W21(y.x,s)= Wl(y.x,s)@W2(Y:C,s)

For specialtypesof Wl(y.x,s)and W2(x,y,s),W(y,x,s)may

be simplifiedgreatly.

Lumped Regulator
Following figure shows that the interaction between a

DPS and a lumped parameter regulator is represented by two

S functions. The closed loop wansfer function from U(x,s) to

Y(a,s) is simplified to:
Wl(a,x,s)

W(a,x,s) = l.lt(s)i ° Wl(a,x_)dr

U(x,s)_

_J_"-Y(y,s)

4. Transfer function of DPS
The transfer function of DPS is closely related to the

attached boundary condition, as weU as given PDE. This is

what differentiates a DPS and lumped system. The transfer

functions of many PDEs with popular boundary conditions

are given in [1]. For a general PDE with arbitrary boundary
conditions, one needs to find the new transfer function by

solving the given PDE with its boundary conditions.

III. An Example

The following figure shows a furnace of length l=1

v, hich heats a continuous stxip of material passing ,&a_:gh

the furnace with speed v=l.

Furnace N4,/////] "IV[// . //_ .,,Matefi-A

_d ---_v r A_" being heated

_lllllllllltlllllllltllllllllllllllllll

Let the temperature field of the furnace be uniformly

distributed in space. Suppose the temperature distribution in

the heated strip isQ(x,t). Then for a normalized system, u(t)

and Q(x,t) are connected by a first order linear partial

differm_tLal equation

_W2(x,t).. _(+_.__+a(x,t) = u(t), O_-z_-I, t->0
at 3x

with boundary condition Q(O,t)=d(t).
Two specific control tasks can now be considered. One

is to regulate the temperature at the output of the furnace.
This is considered first below. The other task is to heat the

material to a specific spatial temperature distribution.
For the first control task, the control equation has the

form U(s)=W(s)[Q(I,t)-Q*(1 ,t)]. Then the control diagram is:

The system written in standard form is:

c)Q(x,t!._, °_Q(x't) +Q(x,t) = u(t)+S(x)d(t)
8t &

_,, - Q* (1 ,s)
F__ Q(1 ,s)

The open loop transfer function W(y.x,s) for the given plant

and boundary conditions is easily derived or found by looking

in the table in [1] to be
W(y,_,s) -- e 4*+t_r_

The closed loop transfer function from d(t) to Q(1 ,t) is
W (1,0,s)

Wl(s)=

1+ll(s) W(l.x,s)d_

0

(s+1)e_'*o

= (s + 1) +ll(s)(l -e _'* t:)

The closed loop transfer function from Q*(t) to Q(l,t) is

f'It(s) W(1.x,s)dx

JO
W2(s) =-

1

I+11(S)io W(1 ,x,s)dx

ll(s)(l-e _'*J))

=(s + l )+l f(sX l-e ¢..I))

The response of Q(l,t) is then
Q(1,s) = Wi(s)C_.d(s)+W:(s)_*(l,s)

i2,_c ch._ac_cris'2c eq,_tion of uhc s)stcm is

_s) = (s + l )+l l(s)( l-e'_'z))
based on which, we can carry on control analysis and design.

All this can be done using conventional control techniques,

such as root locus, Bode plot, etc [3].
Consider a proportional controller where lf(s)=k. The

poles of the closed loop system are shown in Fig. 1. Notice
that there is an infinite number of open loop zeros and one

open loop pole at s=-I that is cancelled by the zero at the

same place. It is seen that for all positive k, the closed loop

system is stable. The closed-loop poles for a general PID
controller are shown in Fig.2 where

H(s) = Kill + I_.L-+Tas)
T_s

Although it is more tedious to implement control

analysis for DPS using conventional techniques, DPS obey
the same rules that a lumped system does. Those rules

include:

(i) The damping ratio and stability decrease with the increase

of Kp, system has a faster response;

(ii) Integral control reduces or eliminates steady-st,am errors at

the expense of reduced stability;



(iii) Derivativecontrolimprovessystem stability.

It should be pointed out that while all of these control

techniques are familiar to most of control engineers, it is the

structural diagram method that makes it possible to apply
this body of knowledge to DPS.

The step responses for proportional control where (1)

k=.5 and two cases of PID control whea'c (2) Kp=.01. Ti=l;6,

Td=2, (3) Kp=.05, Ti=]l]O, Td=l am shown in Fig. 3. The

simulations were performed on the transfer functions using
Euler's method to replace s (s=(z-l)lT) and e'S=r ',, where
n=l[T. The time step used is .001 sec.

The other classical approaches, such as lead and lag
compensators add little significant information.

Another more complex control problem is to regulat_
the temperature distribution along the whole x direction.

For this case, the chosen error signal has the following
form:

I

e(s) = I (Q(y,s) - Q*(y,.r))dy

The control signal is then U(s) = W(s)e(s), where W(s) is

the lumped compensator. Using the same *techniques as
above, the sysu_m response can be regulated to the desize.d

specifications for a reasonably given expected signal Q*(y,s)
(obviously, Q*(y,s)=constant is not a reasonable choice

because of the uniform distribution assumption of control

signal u(t)). Fig.4 shows the steady states of the

temperature distribution of the material being "cooled" for
two cases of control design.

This system will be considered further in a later paper
where robust control methods [4] and functional observers
will be considered.

IV. Summary

It has been shown that the structural theory for DPS

has many properties similar to those of lumped systems, as

well as some substantial differences. "T/w..seare mostly related
to having non-rational transfer functions. Unfortunately,

each particular type of PDE has a correstxmding non-rational

function of the complex variable s (eg. J(x,s), sinh(x,s), etc).

Thus each particular system requires unique special study to
determine its closed loop poles as root locus methods will
not generally be available.
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Fig. I Closed-loop Poles of Proportional Control
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Fig. 2 Closed-loop Poles of PID Control
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Fig. 3 Step Response of Closed-loop System
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Fig. 4 Steady States of Temperature Distribution


